The effect of the use of compression stockings on stress levels and blood clotting parameters in women who have undergone gynaecological operations

Authors

DOI:

https://doi.org/10.15574/PP.2025.3(103).1322

Keywords:

preoperative compression stockings, chronic stress, gynecological surgery, stress hormones, prolactin, cortisol, blood clotting, perceived stress scale, Rieder stress inventory, deep vein thrombosis

Abstract

Chronic stress significantly contributes to the development of deep vein thrombosis (DVT) and negative surgical outcomes.

Aim - to determine the effectiveness of the use of compression stockings and their effect on stress levels and blood clotting parameters in women who have undergone gynecological operations.

Materials and methods. The examined 40 women who were chronically stressed and underwent gynecological operations were randomly divided into two groups: one used preoperative compression stockings on their legs (group 1; n=20), the other did not use (group 2; n=20). Blood samples were collected to measure prolactin, cortisol and blood clotting parameters (prothrombin time, activated partial thromboplastin time and fibrinogen levels). Participants also completed the Perceived Stress Scale (PSS) and Reader’s Stress Inventory.

Results. The study showed that all indicators were better in the group 1 compared to the group 2: prolactin levels were significantly lower (21.7±3.8 ng/ml versus 25.3±4.7 ng/ml); cortisol levels were also lower (16.4±5.2 μg/dL versus 19.3±6.1 μg/dL); blood clotting parameters indicated faster prothrombin time (11.8±1.2 s versus 14.0±1.1 s), activated partial thromboplastin time (30.2±2.8 s versus 34.5±2.5 s) and lower fibrinogen levels (306.3±35.6 mg/dL versus 347.1±38.4 mg/dL). The level of perceived stress was also lower in the group 1 (26.1±6.3 points) compared to the group 2 (30.4±4.7 points).

Conclusions. Preoperative compression stockings significantly reduce the level of stress hormones, perceived stress and improve blood clotting parameters in women undergoing gynecological surgery (the effectiveness was 98%). It is recommended to include to use of these stockings in the protocols of preoperative preparation for this group of patients.

The study was carried out in accordance with the principles of the Declaration of Helsinki and was approved by the ethics committee of this institution.

The authors declare that there is no conflict of interest.

References

Barendregt JN, van Nispen tot Pannerden LA, Chang P.C. (1994). Modulation of natriuresis and renal dopamine excretion by sympathetic activity and the renin-angiotensin-aldosterone system. J Hum Hypertens. 8(10): 747-754.

Becker BK, Zhang D, Soliman R, Pollock DM. (2019). Autonomic nerves and circadian control of renal function. Auton Neurosci. 217: 58-65. https://doi.org/10.1016/j.autneu.2019.01.003; PMid:30704976 PMCid:PMC6415626

Bikov A, Meszaros M., Schwarz EI. (2021). Coagulation and Fibrinolysis in Obstructive Sleep Apnoea. Int J Mol Sci. 22(6). https://doi.org/10.3390/ijms22062834; PMid:33799528 PMCid:PMC8000922

Dey S, Noguchi CT. (2017). Erythropoietin and Hypothalamic-Pituitary Axis. Vitam Horm. 105101-120. https://doi.org/10.1016/bs.vh.2017.02.007; PMid:28629513

Díaz-Morales N, Baranda-Alonso EM, Martínez-Salgado C, López-Hernández FJ. (2023). Renal sympathetic activity: A key modulator of pressure natriuresis in hypertension. Biochem Pharmacol. 208: 115386. https://doi.org/10.1016/j.bcp.2022.115386; PMid:36535529

Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H et al. (2022). Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 19(1): 137. https://doi.org/10.1186/s12974-022-02511-0; PMid:35689216 PMCid:PMC9188164

Ding Y, Gui X, Chu X, Sun Y, Zhang S, Tong H et al. (2023). MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nat Commun. 14(1): 4829. https://doi.org/10.1038/s41467-023-40600-7; PMid:37563135 PMCid:PMC10415391

Döring Y, Libby P, Soehnlein O. (2020). Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental and Clinical Insights. Circ Res. 126(9): 1228-1241. https://doi.org/10.1161/CIRCRESAHA.120.315931; PMid:32324499 PMCid:PMC7185047

Ekim M, Sekeroglu MR, Balahoroglu R, Ozkol H, Ekim H. (2014). Roles of the Oxidative Stress and ADMA in the Development of Deep Venous Thrombosis. Biochem Res Int. 2014: 703128. https://doi.org/10.1155/2014/703128; PMid:24818025 PMCid:PMC4003758

Faron-Górecka A, Kuśmider M, Kolasa M, Zurawek D, Gruca P, Papp M. (2014). Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Res. 1555: 48-59. https://doi.org/10.1016/j.brainres.2014.01.031; PMid:24508286

Fei J, Wang H, Han J, Zhang X, Ma H, Qin X et al. (2023). TXNIP activates NLRP3/IL-1β and participate in inflammatory response and oxidative stress to promote deep venous thrombosis. Exp Biol Med (Maywood). 248(18): 1588-1597. https://doi.org/10.1177/15353702231191124; PMid:37749991 PMCid:PMC10676131

Fernández-González JF, García-Pedraza JÁ, Ordóñez JL, Terol-Úbeda AC, Martín ML et al. (2023). Renal Sympathetic Hyperactivity in Diabetes Is Modulated by 5-HT(1D) Receptor Activation via NO Pathway. Int J Mol Sci. 24(2). https://doi.org/10.3390/ijms24021378; PMid:36674892 PMCid:PMC9865738

Hameed MA, Dasgupta I. (2017). Renal Denervation. Adv Exp Med Biol. 956: 261-277. https://doi.org/10.1007/5584_2016_148; PMid:27815927

Heim X, Bertin D, Resseguier N, Beziane A, Metral A, Brodovitch A, Guieu R et al. (2022). Is Oxidative Stress an Emerging Player in the Thrombosis of Patients with Anti-Phosphatidylethanolamine Autoantibodies? J Clin Med. 11(5). https://doi.org/10.3390/jcm11051297; PMid:35268388 PMCid:PMC8911245

Golomb BA, Chan VT, Denenberg JO, Koperski S, Criqui MH. (2014). Risk marker associations with venous thrombotic events: a cross-sectional analysis. BMJ Open. 4(3): e003208. https://doi.org/10.1136/bmjopen-2013-003208; PMid:24657882 PMCid:PMC3963072

Götzinger F, Kunz M, Lauder L, Mahfoud F, Böhm M. (2023). Radio frequency-based renal denervation: a story of simplicity? Future Cardiol. 19(9): 431-440. https://doi.org/10.2217/fca-2023-0059; PMid:37791469

Govender MM, Nadar A. (2015). A subpressor dose of angiotensin II elevates blood pressure in a normotensive rat model by oxidative stress. Physiol Res. 64(2): 153-159. https://doi.org/10.33549/physiolres.932738; PMid:25317685

Grassi G. (2023). Sympathetic modulation as a goal of antihypertensive treatment: from drugs to devices. J Hypertens. 41(11): 1688-1695. https://doi.org/10.1097/HJH.0000000000003538; PMid:37602470 PMCid:PMC10552843

Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. (2020). Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci. 21(6). https://doi.org/10.3390/ijms21061918

Jara LJ, Medina G, Vera-Lastra O. (2007). Systemic antiphospholipid syndrome and atherosclerosis. Clin Rev Allergy Immunol. 32(2): 172-177. https://doi.org/10.1007/s12016-007-0008-9; PMid:17916989

Julien C, Malpas SC, Stauss HM. (2001). Sympathetic modulation of blood pressure variability. J Hypertens. 19(10): 1707-1712. https://doi.org/10.1097/00004872-200110000-00002; PMid:11593088

Kirchheim H, Ehmke H, Persson P. (1989). Sympathetic modulation of renal hemodynamics, renin release and sodium excretion. Klin Wochenschr. 67(17): 858-864. https://doi.org/10.1007/BF01717340; PMid:2681964

Klavina PA, Leon G, Curtis AM, Preston RJS. (2022). Dysregulated haemostasis in thrombo-inflammatory disease. Clin Sci (Lond). 136(24): 1809-1829. https://doi.org/10.1042/CS20220208; PMid:36524413 PMCid:PMC9760580

Konieczyńska M, Natorska J, Undas A. (2024). Thrombosis and Aging: Fibrin Clot Properties and Oxidative Stress. Antioxid Redox Signal. https://doi.org/10.1089/ars.2023.0365; PMid:38062775

Kristen AV, Just A, Haass M, Seller H. (2002). Central hypercapnic chemoreflex modulation of renal sympathetic nerve activity in experimental heart failure. Basic Res Cardiol. 97(2): 177-186. https://doi.org/10.1007/s003950200009; PMid:12002266

Lam ICH, Wong CKH, Zhang R, Chui CSL, Lai FTT, Li X et al. (2023). Long-term post-acute sequelae of COVID-19 infection: a retrospective, multi-database cohort study in Hong Kong and the UK. E Clinical Medicine. 60: 102000. https://doi.org/10.1016/j.eclinm.2023.102000; PMid:37197226 PMCid:PMC10173760

Liu H, Lu Q. (2024). Fisetin Alleviates Inflammation and Oxidative Stress in Deep Vein Thrombosis via MAPK and NRF2 Signaling Pathway. Int J Mol Sci. 25(7). https://doi.org/10.3390/ijms25073724

Mas JL, Lamy C. (1998). Stroke in pregnancy and the puerperium. J Neurol. 245(6-7): 305-313. https://doi.org/10.1007/s004150050224; PMid:9669480

Ma YH, Yang Y, Li JH, Yao BC, Chen QL, Wang LQ et al. (2023). NDUFB11 and NDUFS3 regulate arterial atherosclerosis and venous thrombosis: Potential markers of atherosclerosis and venous thrombosis. Medicine (Baltimore). 102(46): e36133. https://doi.org/10.1097/MD.0000000000036133; PMid:37986300 PMCid:PMC10659644

Murphy KD, Lee JO, Herndon DN. (2003). Current pharmacotherapy for the treatment of severe burns. Expert Opin Pharmacother. 4(3): 369-384. https://doi.org/10.1517/eoph.4.3.369.22245; PMid:12614189

Ndrepepa G. (2019). Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 493: 36-51. https://doi.org/10.1016/j.cca.2019.02.022; PMid:30797769

Rosovsky RP, Mezue K, Gharios C, Civieri G, Cardeiro A, Zureigat H et al. (2024). Anxiety and depression are associated with heightened risk of incident deep vein thrombosis: Mediation through stress-related neural mechanisms. Am J Hematol. 99(10): 1927-1938. Epub 2024 Jul 4. https://doi.org/10.1002/ajh.27427; PMid:38965839 PMCid:PMC11502251

Seremetis SV. (2001). Sex-related differences in hemostasis and thrombosis. J Gend Specif Med. 4(2): 59-64.

Sorice M, Profumo E, Capozzi A, Recalchi S, Riitano G, Di Veroli B et al. (2023). Oxidative Stress as a Regulatory Checkpoint in the Production of Antiphospholipid Autoantibodies: The Protective Role of NRF2 Pathway. Biomolecules. 13(8): 1221. https://doi.org/10.3390/biom13081221; PMid:37627286 PMCid:PMC10452087

Tiwari HS, Misra UK, Kalita J, Mishra A, Shukla S. (2016). Oxidative stress and glutamate excitotoxicity contribute to apoptosis in cerebral venous sinus thrombosis. Neurochem Int. 100: 91-96. https://doi.org/10.1016/j.neuint.2016.09.003; PMid:27620812

Von Känel R. (2015). Acute mental stress and hemostasis: When physiology becomes vascular harm. Thromb Res. 135; Suppl 1: S52-S55. https://doi.org/10.1016/S0049-3848(15)50444-1

Yamaoka-Tojo M, Tojo T. (2024). Prevention of Natural Disaster-Induced Cardiovascular Diseases. J Clin Med. 13(4): 1004. https://doi.org/10.3390/jcm13041004; PMid:38398317 PMCid:PMC10889681

Published

2025-09-28