Eculiarities of systemic and local immunity in patients with recurrent vulvovaginal candidiasis

Authors

DOI:

https://doi.org/10.15574/PP.2024.98.48

Keywords:

recurrent vulvovaginal candidiasis, general immunity, local immunity, pro-inflammatory cytokines, anti-inflammatory cytokines

Abstract

Aim - to study the state of general and local immunity in women with recurrent vulvovaginal candidiasis (RVVC); to determine the role of immunity in the pathogenesis and prognosis of disease recurrence.

Materials and methods. A prospective study of systemic and local immunity was carried out - the level of immunocompetent peripheral blood cells (CD3, CD4, CD8, CD16, CD19, CD56) in patients with RVVC and a wide range of cytokines (IL-4, IL-5, IL-6, IL-10, IFN-γ, TNF-α and secretory IgA) in the cells of the vaginal mucosa. The main group (МG) consisted of 70 women of reproductive age with RVVC and 40 healthy women of reproductive age, who made up the control group (CG). Statistical analysis of the obtained data was performed using the "SPSS Statistics" software. Differences at p<0.05 are considered statistically significant.

Results. Average values of the main proinflammatory cytokines IL-6 (135±15 mg/ml vs. 92±12 mg/ml), TNF-α (10±2 mg/ml vs. 5±1 mg/ml), lFN-γ (90±11 mg/ml vs. 20±5 mg/ml) in patients with RVVC significantly exceeded similar indicators in healthy women (p<0.05). The level of the anti-inflammatory cytokine IL-10 was almost twice as low as in CG patients (7±1 pg/ml vs. 11±2 pg/ml, p<0.05). The most pronounced changes are found in patients with RVVK occurring on the bacterial vaginosis - so the level of IL-6 pg/ml in patients was 236±55 pg/ml against 94±12 pg/ml in CG, p<0.001; IL-10 - 5±2 pg/ml versus 11±2 pg/ml, respectively, p<0.05; IFN-γ - 104±3 pg/ml versus 20±5 pg/ml in CG and TNF-α 12±3 pg/ml versus 5±1 pg/ml in CG; p<0.001. In the case of chronic RVVC caused by fungi C. albicans and C. non-albicans species, a significant increase in the content of only IFN-γ was found (90±11 pg/ml vs. 20±5 pg/ml in CG, p<0.001; and 52±11 pg/ml vs. 20±5 pg/ml in CG, p<0.05) and TNF-α (10±2 pg/ml vs. 5±1 pg/ml in CG, p<0.05).

Conclusions. Changes in local immunity play a significant role in the development of RVVC: an increase in the levels of pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α) and a decrease in the level of the anti-inflammatory cytokine IL-l0. The ratio of IFN-γ/IL-l0 is a marker of the severity of the course of RVVC and the frequency of disease relapses.

The research was carried out in accordance with the principles of the Helsinki Declaration. The study protocol was approved by the Local Ethics Committee of the participating institution. The informed consent of the patient was obtained for conducting the studies.

No conflict of interests was declared by the authors.

References

Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S et al. (2019). Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell. 176(6): 1340-1355. https://doi.org/10.1016/j.cell.2019.01.041; PMid:30799037

Benitez LL, Carver PL. (2019). Adverse effects associated with long-term administration of azole antifungal agents. Drugs. 79: 833-853. https://doi.org/10.1007/s40265-019-01127-8; PMid:31093949

Bojang E, Ghuman H, Kumwenda P, Hall RA. (2021). Immune sensing of Candida albicans. Journal of Fungi. 7(2): 119. https://doi.org/10.3390/jof7020119; PMid:33562068 PMCid:PMC7914548

Borghi M, Pariano M, Solito V, Puccetti M, Bellet MM et al. (2019). Targeting the aryl hydrocarbon receptor with indole-3-aldehyde protects from vulvovaginal candidiasis via the IL-22-IL-18 cross-talk. Frontiers in Immunology. 10: 2364. https://doi.org/10.3389/fimmu.2019.02364; PMid:31681274 PMCid:PMC6798081

Borghi M, De Luca A, Puccetti M, Jaeger M, Mencacci A, Oikonomou V et al. (2015). Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra. Cell host & microbe. 18(2): 198-209. https://doi.org/10.1016/j.chom.2015.07.004; PMid:26269955

Camilli G, Griffiths JS, Ho J, Richardson JP, Naglik JR. (2020). Some like it hot: Candida activation of inflammasomes. PLoS Pathogens. 16(10): e1008975. https://doi.org/10.1371/journal.ppat.1008975; PMid:33119702 PMCid:PMC7595283

Carolus H, Van Dyck K, Van Dijck P. (2019). Candida albicans and staphylococcus species: a threatening twosome. Front. Microbiol. 10: 2162. https://doi.org/10.3389/fmicb.2019.02162; PMid:31620113 PMCid:PMC6759544

De SK. (2023). Oteseconazole: First Approved Orally Bioavailable and Selective CYP51 Inhibitor for the Treatment of Patients with Recurrent Vulvovaginal Candidiasis. Current Medicinal Chemistry. 30(37): 4170-4175. https://doi.org/10.2174/0929867330666230220130024; PMid:36803759

Donders GG, Grinceviciene S, Bellen G, Jaeger M, Ten Oever J, Netea MG. (2018). Is non‐response to fluconazole maintenance therapy for recurrent Candida vaginitis related to sensitization to atopic reactions?. American Journal of Reproductive Immunology. 79(4): e12811. https://doi.org/10.1111/aji.12811; PMid:29469170

Galdiero E, de Alteriis E, De Natale A, D'Alterio A, Siciliano A, Guida M et al. (2020). Eradication of Candida albicans persister cell biofilm by the membranotropic peptide gH625. Scientific Reports. 10(1): 5780. https://doi.org/10.1038/s41598-020-62746-w; PMid:32238858 PMCid:PMC7113253

Gander-Bui HTT, Schläfli J, Baumgartner J, Walthert S, Genitsch V, van Geest G et al. (2023). Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis. Immunity. 56(8): 1743-1760. https://doi.org/10.1016/j.immuni.2023.06.023; PMid:37478856

Hirayama T, Miyazaki T, Ito Y et al. (2020). Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation. Sci Rep. 10: 3814. https://doi.org/10.1038/s41598-020-60792-y; PMid:32123235 PMCid:PMC7052222

Jaeger M, Pinelli M, Borghi M, Constantini C, Dindo M, Van Emst L et al. (2019). A systems genomics approach identifies SIGLEC15 as a susceptibility factor in recurrent vulvovaginal candidiasis. Science Translational Medicine. 11(496): eaar3558. https://doi.org/10.1126/scitranslmed.aar3558; PMid:31189718

Jin YM, Liu SS, Xu TM, Guo FJ, Chen J. (2019). Retracted: Impaired Th17 cell proliferation and decreased pro‐inflammatory cytokine production in CXCR3/CXCR4 double‐deficient mice of vulvovaginal candidiasis. Journal of Cellular Physiology. 234(8): 13894-13905. https://doi.org/10.1002/jcp.28071; PMid:30656691

Lee Y, Puumala E, Robbins N, Cowen LE. (2021). Antifungal drug resistance: Molecular mechanisms in candida albicans and beyond. Chem. Rev. 121: 3390-3411. https://doi.org/10.1021/acs.chemrev.0c00199; PMid:32441527 PMCid:PMC8519031

Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U et al. (2019). Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nature medicine. 25(10): 1500-1504. https://doi.org/10.1038/s41591-019-0600-6; PMid:31591599

Liao J, Pan B, Liao G, Zhao Q, Gao Y, Chai X et al. (2019). Synthesis and immunological studies of beta-1,2-mannan-peptide conjugates as antifungal vaccines. Eur. J. Med. Chem. 173: 250-260. https://doi.org/10.1016/j.ejmech.2019.04.001; PMid:31009911

Martin-Cruz L, Sevilla-Ortega C, Benito-Villalvilla C, Diez-Rivero CM, Sanchez-Ramon S, Subiza JL et al. (2020). A combination of polybacterial MV140 and candida albicans V132 as a potential novel trained immunity-based vaccine for genitourinary tract infections. Front. Immunol. 11: 612269. https://doi.org/10.3389/fimmu.2020.612269; PMid:33552074 PMCid:PMC7858650

Mintser AP. (2018). Statisticheskie metodyi issledovaniya v klinicheskoy meditsine. Prakticheskaya meditsina. 3: 41-45.

Moretti S, Renga G, Oikonomou V, Galosi C, Pariano M, Iannitti RG et al. (2017). A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nature communications. 8(1): 14017. https://doi.org/10.1038/ncomms14017; PMid:28090087 PMCid:PMC5241810

Mutli E, Mändar R, Koort K, Salumets A, Laisk T, Estonian Biobank Research Team. (2024). Genome-wide association study in Estonia reveals importance of vaginal epithelium associated genes in case of recurrent vaginitis. Journal of Reproductive Immunology. 62: 104216. Epub 2024 Feb 13. https://doi.org/10.1016/j.jri.2024.104216; PMid:38377669

Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. (2019). Fungal vaccines, mechanism of actions and immunology: a comprehensive review. Biomedicine & Pharmacotherapy. 109: 333-344. https://doi.org/10.1016/j.biopha.2018.10.075; PMid:30399567

Pellon A, Sadeghi Nasab SD, Moyes DL. (2020). New insights in Candida albicans innate immunity at the mucosa: toxins, epithelium, metabolism, and beyond. Frontiers in cellular and infection microbiology. 10: 81. https://doi.org/10.3389/fcimb.2020.00081; PMid:32195196 PMCid:PMC7062647

Peroumal D, Manohar K, Patel SK, Kumari P, Sahu SR, Acharya N. (2019). Virulence and pathogenicity of a candida albicans mutant with reduced filamentation. Cell. Microbiol. 21: e13103. https://doi.org/10.1111/cmi.13103; PMid:31424154

Peroumal D, Sahu SR, Kumari P, Utkalaja B, Acharya N. (2022). Commensal fungi candida albicans modulates dietary high-fat induced alterations in metabolism, immunity, and gut microbiota. bioRxiv. https://doi.org/10.1101/2022.03.23.485455; PMid:36135388 PMCid:PMC9603587

Peters BM, Coleman BM, Willems HM, Barker KS, Aggor FE, Cipolla E et al. (2020). The interleukin (IL) 17R/IL-22R signaling axis is dispensable for vulvovaginal candidiasis regardless of estrogen status. The Journal of infectious diseases. 221(9): 1554-1563. https://doi.org/10.1093/infdis/jiz649; PMid:31805183 PMCid:PMC7137889

Renga G, Borghi M, Oikonomou V, Mosci P, Bartoli A, Renauld JC et al. (2018). IL-9 integrates the host-candida cross-talk in vulvovaginal candidiasis to balance inflammation and tolerance. Frontiers in immunology. 9: 2702. https://doi.org/10.3389/fimmu.2018.02702; PMid:30515173 PMCid:PMC6255860

Renga G, Moretti S, Oikonomou V, Borghi M, Zelante T, Paolicelli G et al. (2018). IL-9 and mast cells are key players of Candida albicans commensalism and pathogenesis in the gut. Cell Reports. 23(6): 1767-1778. https://doi.org/10.1016/j.celrep.2018.04.034; PMid:29742432 PMCid:PMC5976578

Rizzo J, Rodrigues ML, Janbon G. (2020). Extracellular vesicles in fungi: Past, present, and future perspectives. Front. Cell Infect. Microbiol. 10: 346. https://doi.org/10.3389/fcimb.2020.00346; PMid:32760680 PMCid:PMC7373726

Rosati D, Bruno M, Jaeger M, Ten Oever J, Netea MG. (2020). Recurrent vulvovaginal candidiasis: an immunological perspective. Microorganisms. 8(2): 144. https://doi.org/10.3390/microorganisms8020144; PMid:31972980 PMCid:PMC7074770

Roselletti E, Perito S, Gabrielli E, Mencacci A, Pericolini E, Sabbatini S et al. (2017). NLRP3 inflammasome is a key player in human vulvovaginal disease caused by Candida albicans. Scientific reports. 7(1): 17877. https://doi.org/10.1038/s41598-017-17649-8; PMid:29259175 PMCid:PMC5736597

Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG et al. (2022, Aug 18). Vaccines against candidiasis: Status, challenges and emerging opportunity. Front Cell Infect Microbiol. 12: 1002406. https://doi.org/10.3389/fcimb.2022.1002406; PMid:36061876 PMCid:PMC9433539

Shen H, Yu Y, Chen SM, Sun JJ, Fang W, Guo SY et al. (2020). Dectin-1 facilitates IL-18 production for the generation of protective antibodies against candida albicans. Front. Microbiol. 11: 1648. https://doi.org/10.3389/fmicb.2020.01648; PMid:32765468 PMCid:PMC7378971

Shukla M, Chandley P, Rohatgi S. (2021). The role of B-cells and antibodies against Candida vaccine antigens in invasive candidiasis. Vaccines. 9(10): 1159. https://doi.org/10.3390/vaccines9101159; PMid:34696267 PMCid:PMC8540628

Tarang S, Kesherwani V, La Tendresse B, Lindgren L, Rocha-Sanchez SM, Weston MD. (2020). In silico design of a multivalent vaccine against candida albicans. Sci. Rep. 10: 1066. https://doi.org/10.1038/s41598-020-57906-x; PMid:31974431 PMCid:PMC6978452

Tso GHW, Reales-Calderon JA, Pavelka N. (2018). The elusive anti-Candida vaccine: lessons from the past and opportunities for the future. Frontiers in Immunology. 9: 897. https://doi.org/10.3389/fimmu.2018.00897; PMid:29755472 PMCid:PMC5934487

Valentine M, Rudolph P, Dietschmann A, Tsavou A, Mogavero S, Lee S et al. (2024). Nanobody-mediated neutralization of candidalysin prevents epithelial damage and inflammatory responses that drive vulvovaginal candidiasis pathogenesis. Mbio. 15(3): e0340923. Epub 2024 Feb 13. https://doi.org/10.1128/mbio.03409-23; PMid:38349176 PMCid:PMC10936171

Wu X, Zhang S, Xu X, Shen L, Xu B, Qu W et al. (2019). RAFT-derived polymethacrylates as a superior treatment for recurrent vulvovaginal candidiasis by targeting biotic biofilms and persister cells. Frontiers in Microbiology. 10: 2592. https://doi.org/10.3389/fmicb.2019.02592; PMid:31787962 PMCid:PMC6853869

Yano J, Peters BM, Noverr MC, Fidel Jr PL. (2018). Novel mechanism behind the immunopathogenesis of vulvovaginal candidiasis:"neutrophil anergy". Infection and immunity. 86(3): e00684-17. https://doi.org/10.1128/IAI.00684-17; PMid:29203543 PMCid:PMC5820946

Zhou Y, Cheng L, Lei YL, Ren B, Zhou X. (2021, Jun 21). The Interactions Between Candida albicans and Mucosal Immunity. Front Microbiol. 12: 652725. https://doi.org/10.3389/fmicb.2021.652725; PMid:34234752 PMCid:PMC8255368

Published

2024-06-28