Vascular disorders in patients with rheumatic diseases who have transferred COVID-19

Authors

DOI:

https://doi.org/10.15574/PP.2022.91.61

Keywords:

children, rheumatic diseases, COVID-19, vascular disorders

Abstract

The article briefly summarizes data on the role of micro- and macrocirculatory disorders in the pathogenesis of COVID-19.

Focused attention on similarities of clinical and pathogenetic features of rheumatic diseases, COVID-19 and its complications.

The review analyzed and compared the data of the assessment of the main instrumental studies of the functional state of blood vessels in patients with rheumatic diseases in general and in patients with rheumatic diseases who suffered from COVID-19 (capillaroscopy and occlusion test).

A conclusion was made about the presence of endothelial dysfunction in rheumatic diseases and its features in patients with rheumatic diseases after transmission of COVID-19.

This leads to the opinion about the expediency of timely detection of secondary disorders of the functional state of blood vessels in patients with rheumatic diseases who are convalescents of COVID-19, and justifies the use of an occlusion test for this purpose.

No conflict of interests was declared by the authors.

Author Biography

O.A. Oshlyanska, Shupyk National Healthcare University of Ukraine, Kyiv

SI «Institute of Pediatrics, Obstetrics and Gynecology named after academician O.M. Lukyanova of the NAMS of Ukraine», Kyiv

References

Ahmed S, Zimba O, Gasparyan AY. (2020, Jul 11). Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad. Clinical Rheumatology. 39: 2529-2543. https://doi.org/10.1007/s10067-020-05275-1; PMid:32654082 PMCid:PMC7353835

Alkindi F, Nokhatha SA, Alseiari K, Hip R. (2022, Mar). Arthritis and Avascular Necrosis After Severe COVID-19 Infection: A Case Report and Comprehensive Review of Literature. EMJ. 7 (1): 48-55. doi: 10.33590/emj/21-00261.

Avdeeva IV, Polezhaeva KN, Burko NV i dr. (2022). Vliyanie infektsii SARS-CoV-2 na strukturno-funktsionalnyie svoystva arteriy. University proceedings. Volga region. Medical sciences: 2. https://doi.org/10.21685/2072-3032-2022-2-2

Barton LM, Duval EJ, Stroberg E et al. (2020). COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. doi: 10.1093/ajcp/aqaa062. https://doi.org/10.1093/ajcp/aqaa062; PMid:32275742 PMCid:PMC7184436

Basatneh R, Vlahovic TC. (2020). Addressing the question of dermatologic manifestations of SARS-CoV-2 infection in the lower extremities: a closer look at the available data and its implications. J Am Podiatr Med Assoc. https://doi.org/10.7547/20-074; PMid:32310671

Bi X, Su Z, Yan H et al. (2020). Prediction of severe illness due to COVID-19 based on an analysis of initial fibrinogen to albumin ratio and platelet count. Platelets: 1-6. https://doi.org/10.1080/09537104.2020.1760230; PMid:32367765 PMCid:PMC7212543

Bonetti Piero O, Pumper Geralyn M et al. (2004). Noninvasive Identification of Patients With Early Coronary Atherosclerosis by Assessment of Digital Reactive Hyperemia. Journal of the American College of Cardiology. 44: 11. https://doi.org/10.1016/j.jacc.2004.08.062; PMid:15582310

Bouaziz JD, Duong T, Jachiet M et al. (2020). Vascular skin symptoms in COVID-19: a french observational study. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16544

Brodin P. (2020). Why is COVID-19 so mild in children? Acta Paediatr. https://doi.org/10.1111/apa.15271; PMid:32212348

Carsetti R, Quintarelli C, Quinti I et al. (2020). The immune system of children: the key to understanding SARS-CoV-2 susceptibility? The Lancet Child & Adolescent Health. https://doi.org/10.1016/S2352-4642(20)30135-8

Chen J JQ, Xia X, Liu K et al. (2020). Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 19 (7): e13168. https://doi.org/10.1111/acel.13168

Çiftel1 M, Ateş N, Yılmaz O. (2022). Investigation of endothelial dysfunction and arterial stiffness in multisystem inflammatory syndrome in children. European Journal of Pediatrics. 181: 91-97. https://doi.org/10.1007/s00431-021-04136-6; PMid:34212240 PMCid:PMC8249181

Colantuoni A, Martini R, Caprari P et al. (2020). COVID-19 Sepsis and Microcirculation Dysfunction Front. Physiol. 11: 747. https://doi.org/10.3389/fphys.2020.00747; PMid:32676039 PMCid:PMC7333313

Colmenero I, Santonja C, Alonso-Riano M et al. (2020). SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol. 183: 729-737. https://doi.org/10.1111/bjd.19327; PMid:32562567 PMCid:PMC7323219

Cron RQ, Chatham WW. (2020). The rheumatologist's role in COVID-19. J Rheumatol. https://doi.org/10.3899/jrheum.200334; PMid:32209661

De Andrade SA, de Souza DA, Torres AL et al. (2022, Jun 3). Pathophysiology of COVID-19: Critical Role of Hemostasis Front. Cell. Infect. Microbiol, Sec. Clinical Microbiology. https://doi.org/10.3389/fcimb.2022.896972; PMid:35719336 PMCid:PMC9205169

Ezgi Deniz Batu, Seza Оzen. (2020). Implications of COVID 19 in pediatric rheumatology Rheumatology International. 40: 1193-1213. https://doi.org/10.1007/s00296-020-04612-6; PMid:32500409 PMCid:PMC7270517

Fernandez-Nieto D, Jimenez-Cauhe J, Suarez-Valle A et al. (2020). Characterization of acute acro-ischemic lesions in non-hospitalized patients: a case series of 132 patients during the COVID-19 outbreak. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2020.04.093; PMid:32339703 PMCid:PMC7195051

Fraga-Silva RA, Pinheiro SVB, Gonçalves ACC et al. (2008). The antithrombotic effect of angiotensin-(1-7) involves mas-mediated NO release from platelets. Mol Med. 14: 28-35. https://doi.org/10.2119/2007-00073.Fraga-Silva; PMid:18026570 PMCid:PMC2078558

Fu Y, Cheng Y, Wu Y. (2020). Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 35 (3): 266-271. https://doi.org/10.1007/s12250-020-00207-4; PMid:32125642 PMCid:PMC7090474

Han H, Yang L, Liu R et al. (2020). Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 58: 1116-1120. https://doi.org/10.1515/cclm-2020-0188; PMid:32172226

Haşlak F, Yıldız M, Adrovic A et al. (2020). Childhood Rheumatic Diseases and COVID-19 Pandemic: An Intriguing Linkage and a New Horizon. Balkan Med J. 37: 184-188. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.4.43

Hedrich CM. (2020). COVID-19-considerations for the paediatric rheumatologist. Clin Immunol. 214: 108-420. https://doi.org/10.1016/j.clim.2020.108420; PMid:32283324 PMCid:PMC7151358

Henter JI, Horne A, Arico M et al. (2007). HLH-2004: diagnostic and therapeutic guidelines for 1210 Rheumatology International. 40: 1193-1213. Pediatr Blood Cancer. 48: 124-131. https://doi.org/10.1002/pbc.21039; PMid:16937360

Huang C, Wang Y, Li X et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Kapten K, Orczyk K, Smolewska E. (2021). The effect of vitamin D3 and thyroid hormones on the capillaroscopy confirmed microangiopathy in pediatric patients with a suspicion of systemic connective tissue disease a single center experience with Raynaud phenomenon. Rheumatology International. 41: 1485-1493. https://doi.org/10.1007/s00296-021-04919-y; PMid:34132891 PMCid:PMC8207495

Lapi D, Stornaiuolo M, Sabatino L et al. (2020). The pomace extract taurisolo protects rat brain from ischemia-reperfusion injury. Front. Cell. Neurosci. 14: 3. https://doi.org/10.3389/fncel.2020.00003; PMid:32063837 PMCid:PMC6997812

Lee PI, Hu YL, Chen PY et al. (2020). Arechildren less susceptible to COVID-19? J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2020.02.011; PMid:32147409 PMCid:PMC7102573

Liu L, Wei Q, Lin Q et al. (2019). Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 4 (4): e123158. https://doi.org/10.1172/jci.insight.123158; PMid:30830861 PMCid:PMC6478436

Liu Y, Yan LM, Wan L et al. (2020). Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30232-2

Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 220: 1-13. https://doi.org/10.1016/j.trsl.2020.04.007; PMid:32299776 PMCid:PMC7158248

Maier CL, Truong AD, Auld SC et al. (2020). COVID-19-associated hyperviscosity: a link between inflammation andthrombophilia? Lancet Lond. https://doi.org/10.1016/S0140-6736(20)31209-5

Marder W, Khalatbari S, Myles JD et al. (2011, Sep). Interleukin 17 as a novel predictor of vascular function in rheumatoid arthritis. Ann Rheum Dis. 70 (9): 1550-1555. https://doi.org/10.1136/ard.2010.148031; PMid:21727237 PMCid:PMC3151670

McGonagle D, O'Donnell JS, Sharif K et al. (2020). Immunemechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2: e437-e445. https://doi.org/10.1016/S2665-9913(20)30121-1

McGonagle D, Sharif K, O'Regan A, Bridgewood C. (2020). The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 102537. https://doi.org/10.1016/j.autrev.2020.102537; PMid:32251717 PMCid:PMC7195002

Menter T, Haslbauer JD, Nienhold R et al. (2020). Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. https://doi.org/10.1111/his.14134; PMid:32364264 PMCid:PMC7496150

Niboshi A, Hamaoka K, Sakata K, Yamaguchi N. (2008). Endothelial dysfunction in adult patients with a history of Kawasaki disease. Eur J Pediatr. 167: 189-196. https://doi.org/10.1007/s00431-007-0452-9; PMid:17345094

Nickbakhsh S, Mair C, Matthews L et al. (2019). Virus-virus interactions impact thepopulation dynamics of influenza and the common cold. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1911083116; PMid:31843887 PMCid:PMC6936719

Panigada M, Bottino N, Tagliabue P et al. (2020). Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. JTH. 18 (7): 1738-1742. https://doi.org/10.1111/jth.14850; PMid:32302438

Pober JS, Sessa WC. (2007). Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 7: 803-815. https://doi.org/10.1038/nri2171; PMid:17893694

Price E, MacPhie AE, Kay BL et al. (2020, May 5). Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic Clinical Medicine Publish Ahead of Print. https://doi.org/10.7861/clinmed.2020-0149; PMid:32371418 PMCid:PMC7354033

Ranucci M, Ballotta A, Di Dedda U et al. (2020). The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. https://doi.org/10.1111/jth.14854; PMid:32302448

Ravelli A, Davi S, Minoia F et al. (2015). Macrophage activation syndrome. Hematol Oncol Clin North Am. 29: 927-941. https://doi.org/10.1016/j.hoc.2015.06.010; PMid:26461152

Risitano AM, Mastellos DC, Huber-Lang M et al. (2020). Complement as a target in COVID-19? Nat Rev Immunol. 20: 343-344. https://doi.org/10.1038/s41577-020-0320-7; PMid:32327719 PMCid:PMC7187144

Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E et al. (2020). Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. https://doi.org/10.1016/j.tmaid.2020.101623; PMid:32179124 PMCid:PMC7102608

Roustit M, Simmons GH, Baguet J-P, Carpentier P, Cracowski J-L. (2008, Jul). Discrepancy between simultaneous digital skin microvascular and brachial artery macrovascular post-occlusive hyperemia in systemic sclerosis. The Journal of Rheumatology. 35 (8): 1576-1583.

Ruwald JM, Jacobs C, Scheidt S et al. (2019, Dec). Laser-based Techniques for Microcirculatory Assessment in Orthopedics and Trauma Surgery Past, Present, and Futurе Annals of Surgery. 270: 6. https://doi.org/10.1097/SLA.0000000000003139; PMid:30672807

Sagaydachniy АА. (2018, Sep). Reactive hyperemia test: methods of analysis, mechanisms of reaction and prospects. Regional Blood Circulation and Microcirculation. https://doi.org/10.24884/1682-6655-2018-17-3-5-22

Son MBF, Friedman K. (2021, Apr). COVID-19: Multisystem inflammatory syndrome in children (MIS-C) clinical features, evaluation, and diagnosis. URL: https://www.uptodate.com/contents/covid-19-multisystem-inflammatory-syndrome-in-children-mis-c-clinical-features-evaluation-and-diagnosis.

Sonmez HE, Karaaslan C, de Jesus AA et al. (2020). A clinical score to guide in decision making for monogenic type I. IF Nopathies. Pediatr Res. 87: 745-752. https://doi.org/10.1038/s41390-019-0614-2; PMid:31641281 PMCid:PMC8425764

Sulli A, Gotelli E, Bica PF et al. (2022, Jan). Detailed videocapillaroscopic microvascular changes detectable in adult COVID-19 survivors. Microvascular Research. 142: 104361. https://doi.org/10.1016/j.mvr.2022.104361; PMid:35339493 PMCid:PMC8942583

Tavakol ME, Alimohammad Fatemi, Karbalaie A et al. (2015). Nailfold Capillaroscopy in Rheumatic Diseases: Which Parameters Should Be Evaluated? Hindawi Publishing Corporation BioMed Research International. Article ID 974530. https://doi.org/10.1155/2015/974530; PMid:26421308 PMCid:PMC4569783

Urano T, Suzuki Y. (2012). Accelerated fibrinolysis and its propagation on vascular endothelial cells by secreted and retained tPA. J Biomed Biotechnol. 2012: 208108. https://doi.org/10.1155/2012/208108; PMid:23118500 PMCid:PMC3478939

Vlachoyiannopoulos PG, Magira E, Alexopoulos H et al. (2020, Jun 24). Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19 Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-218009; PMid:32581086

Wahezi DM, Peskin M, Tanner T. (2021). The impact of the COVID-19 pandemic on the field of pediatric rheumatology. Curr Opin Rheumatol. 33: 446-452. https://doi.org/10.1097/BOR.0000000000000814; PMid:34175864 PMCid:PMC8373393

Wright FL, Vogler TO, Moore EE et al. (2020). Fibrinolysis shutdowncorrelates to thromboembolic events in severe COVID-19 infection. J Am Coll Surg. https://doi.org/10.1016/j.jamcollsurg.2020.05.007; PMid:32422349 PMCid:PMC7227511

Wu Z, McGoogan JM. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. https://doi.org/10.1001/jama.2020.2648; PMid:32091533

Ye Q, Wang B, Mao J. (2020). The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. https://doi.org/10.1016/j.jinf.2020.03.037; PMid:32283152 PMCid:PMC7194613

Yi-Ping Gao, Wei Zhou, Pei-Na Huang et al. (2022). Persistent Endothelial Dysfunction in Coronavirus Disease-2019 Survivors Late After Recovery. Front. Med. 9: 809033. https://doi.org/10.3389/fmed.2022.809033; PMid:35237624 PMCid:PMC8882598

You-Bin Deng, Hui-Juan Xiang, Qing Chang, Chun-Lei Li. (2002). Evaluation by High-Resolution Ultrasonography of Endothelial Function in Brachial Artery After Kawasaki Disease and the Effects of Intravenous Administration of Vitamin C. Circ J. 66: 908-912. https://doi.org/10.1253/circj.66.908; PMid:12381083

Zhan J, Deng R, Tang J et al. (2006). The spleen as a target in severe acute respiratory syndrome. FASEB J. 20: 2321-2328. https://doi.org/10.1096/fj.06-6324com; PMid:17077309

Published

2022-09-30